Minimisation of Energy Consumption Variance for Multi-Process Manufacturing Lines Through Genetic Algorithm Manipulation of Production Schedule

نویسندگان

  • C. Duerden
  • L. - K. Shark
  • G. Hall
  • J. Howe
چکیده

Typical manufacturing scheduling algorithms do not consider the energy consumption of each job, or its variance, when they generate a production schedule. This can become problematic for manufacturers when local infrastructure has limited energy distribution capabilities. In this paper, a genetic algorithm based schedule modification algorithm is presented. By referencing energy consumption models for each job, adjustments are made to the original schedule so that it produces a minimal variance in the total energy consumption in a multi-process manufacturing production line, all while operating within the constraints of the manufacturing line and individual processes. Empirical results show a significant reduction in energy consumption variance can be achieved on schedules containing multiple concurrent jobs. Index terms – Energy consumption optimisation, Genetic algorithms, Peak energy, Schedule optimisation

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic Algorithm based Modification of Production Schedule for Variance Minimisation of Energy Consumption

Typical manufacturing scheduling algorithms do not consider the energy consumption of each job, or its variance, when they generate a production schedule. This can become problematic for manufacturers when local infrastructure has limited energy distribution capabilities. In this paper, a genetic algorithm based schedule modification algorithm is presented. By referencing energy consumption mod...

متن کامل

Modeling and Optimization of Energy Inputs and Greenhouse Gas Emissions for Eggplant Production Using Artificial Neural Network and Multi-Objective Genetic Algorithm

This paper studies the modeling and optimization of energy use and greenhouse gas emissions of eggplant production using artificial neural network and multi-objective genetic algorithm in Guilan province of Iran. Results showed that the highest share of energy consumption belongs to diesel fuel (49.24%); followed by nitrogen (33.30%). The results indicated that a total energy input of 13910.67 ...

متن کامل

Modeling and Optimization of Energy Inputs and Greenhouse Gas Emissions for Eggplant Production Using Artificial Neural Network and Multi-Objective Genetic Algorithm

This paper studies the modeling and optimization of energy use and greenhouse gas emissions of eggplant production using artificial neural network and multi-objective genetic algorithm in Guilan province of Iran. Results showed that the highest share of energy consumption belongs to diesel fuel (49.24%); followed by nitrogen (33.30%). The results indicated that a total energy input of 13910.67 ...

متن کامل

Using Markov Chain to Analyze Production Lines Systems with Layout Constraints

There are some problems with estimating the time required for the manufacturing process of products, especially when there is a variable serving time, like control stage. These problems will cause overestimation of process time. Layout constraints, reworking constraints and inflexible product schedule in multi product lines need a precise planning to reduce volume in particular situation of lin...

متن کامل

Power Consumption Minimization of Khormoj Compressor Station

Arguably, the natural gas transmission pipeline infrastructure in Iran represents one of the largest and most complex mechanical systems in the world. The optimization of large gas trunk lines known as IGAT results in reduced fuel consumption or higher capability and improves pipeline operation. In the current study, a single-objective optimization was conducted for Khormoj compressor station o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015